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The relaxation of the processes of absorption and release of diffusing atoms 
from structural defects in a solid material, dependent on the duration of the 
laxation times, leads to a hyperbolic or elliptical equation to describe the 
diffusion process. 

The internal heterogeneity and structural imperfection of metals and alloys exert a 
marked influence on the behavior and, in particular, on the diffusion transport of impuri- 
ties dissolved within these [i]. These defects are capable of absorbing and retaining with- 
in the flow (for a specific period of time) the atoms of the diffusing impurity, thus sim- 
ultaneously preventing their migration and affecting both the velocity and other character- 
istics of the diffusion process. In addition to macroscopic defects (extraneOus inclusions, 
elements of the new phase, micropores, grain boundaries, etc.), real crystals also usually 
contain microscopic "zero dimensional" defect (vacancies of various kinds, impurity atoms, 
broadened interstices and interstices in general through which no migration takes place, 
etc.), capable of absorbing only a single atom. Although the types of such spot defects are 
extremely varied [2], they can virtually all be represented as low-energy traps (see Fig. i), 
whose characteristic dimensions are on the order of the interatomic distances within a cry- 
stal, with the binding energy considerable greater than that for impurity atoms in their nor- 
mal positions. The dimensions of the macroscopic traps may exceed the interatomic distances 
by several orders of magnitude. In this case, the situation depicted in Fig. 1 charact- 
erizes the transition of atoms through a potential barrier at the surfaces of the traps. 

The phenomenal logical theory of diffusion in materials with spot traps, based on the 
modeling of capture and release processes in the case of diffusing atoms resulting from se- 
cond-order reactions with nonvarying reaction-rate constants, was developed in [3-7] and, 
subsequently utilized rather extensively (see, for example [8-10]). This theory is based on 
the equations 

O~Ot = DAc  - -  k 1 (m ,  - -  m) c + k~ (c,  - -  @ m, 

am/Ot = kl  (m ,  - -  m) c - -  k2 (c ,  - -  c) m. ( 1 ) 

In situations in which the fraction of the normal occupied positions and traps is small 
in comparison to unity (i.e., c ~ c,z m r m,), system (i) is easily linearized, assuming D 
to be independent of c, i.e., 

O~at  =DAc--kc+~m, om/a t  = k c - - ~ m ,  (2) 

When we assume that the nonsteadiness is weak, from (2) we can where k = m,kl, ~ = c,k 2. 
obtain [i, 3-7]: 

D 
a ( c + m )  _ D A c e _ _  A(c+m), (3) 

at 1 + k/X 

which approximately describes the reduction in the coefficient of diffusion, if we define 
the diffusion flux on the basis of the total concentration gradient rather than on the basis 
of the concentration gradient applicable to the atoms in normal positions, provided that we 
take into consideration those atoms retained within the traps. 

The quantities k I and k 2 describe, respectively, the processes of atomic absorption and 
release by occupied spot traps, each of which, i.e., the processes, consists of two succes- 
sive stages. The first process involves the diffusion migration of an atom in the immediate 
vicinity of the trap and the actual capture of that atom by the trap (the overcoming by the 
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Fig. i. Energy circuit of trap. 
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Fig. 2 

Fig. 2. Relative flow in the pressure oscillation method as a function 
of the dimensionless frequency for various H (numerals identify the 
curves) 

atom of the potential barrier U = A + 40). The second process involves the release o:! the 
atom from the trap (the atom's overcoming of the barrier U ~ = A ~ + 40) and its diffusion dis- 
placement through a distance considerably greater than a . 

However, the diffusion stages of the two processes are extended both in space and in 
time. Therefore, their rates at a specified point at some instant of time must depend on 
the concentrations c and m not only at that point, but in its vicinity at all previous in- 
stants of time. Moreover, the stages associated with the overcoming of the potential barri- 
ers by the atoms represent, generally speaking, relaxation-type processes. Equations (2) 
with constant coefficients may therefore be valid only for steady-state diffusion pro,:esses, 
or states very close to these, while being physically inadequate for significantly nonsteady 
diffusion processes. As follows from results of an analysis of the mass and heat transfer 
in heterogeneous dispersed systems [Ii, 12], these coefficients must not be treated a:~ con- 
stants, but rather as integral differential operators over time, whose form actually deter- 
mines the nature of the transport process. 

In an approximation leading to (2), these operators must be linear. Therefore, it is 
natural to apply the Fourier transform (2) insofar as this pertains to time, transforming 
these operators into functions of the transformation (frequency) parameter ~ [ii, 12], i.e., 
to obtain 

ioJc = D Ac - -  kc + ~.m, iota = kc - -  ~m. 
(4) 

Instead of (4), we might also take a look at the unique equation 

A c - - # c = O '  s2= i~ ( I ~+i~k ) (5) 

(the notations for the Fourier transforms remain the same as for the originals). 

In the following we will assume that the concentration m, for the spot defects is small 
in comparison with the concentration c, for the normal diffusion positions. Then, first of 
all, it is possible to neglect the difference in the effective coefficient of diffusion un- 
der steady-state conditions from the coefficient of diffusion in the matrix (i.e., in the 
material which contains no defects). Secondly, Eq. (5) can be used to describe the diffu- 
sion of atoms near each defect in accordance with the classical Smolukhovskii method [13, 14], 
assuming the defect to be situated in the virtually unbounded matrix. 

Let us now take a look at the three-dimensional and surface macroscopic traps. For the 
sake of determinacy, we will simulate these, respectively, by a sphere of radius a or by a 
spherical layer of the same radius, with thickness 6, containing an impurity uniformly dis- 
tributed over the sphere or layer with the concentration c ~ . The quantity m, representing 
in this case the ratio of the total number of atoms in all of the traps in a small physical 
volume of material to the magnitude of this volume, is equal to 
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Flow phase in pressure oscillation method as a function of fre- 

Carbon concentration relative units (distribution through the 
thickness of the surface steel layer) the points indicate results from 
various experiments under identical conditions (and theoretical curves 
taken from hyperbolic and parabolic equations) the solid and dashed 
curves, respectively (in intervals of 4.67 h after the onset of satura- 
tion. x, mm. 

m = 4~'~aaSnc~ ( 6 )  

w i t h  6 = a / 3  f o r  t h e  t h r e e - d i m e n s i o n a l  t r a p s  and 6 f o r  t h o s e  s u r f a c e  t r a p s  i n d e p e n d e n t  o f  

As f o l l o w s  f rom t h e o r y  [15 ,  1 6 ] ,  a t o m i c  d i f f u s i o n  in  t h e  v i c i n i t y  o f  each  o f  t h e  t r a p s  
can a l s o  be d e s c r i b e d  in  t h i s  c a s e ,  on t h e  a v e r a g e ,  by means o f  e q u a t i o n s  such  as  (4)  and 
( 5 ) .  I n  t h i s  c a s e ,  t h e  p r e s e n c e  o f  o t h e r  t r a p s  a f f e c t s  t h i s  p r o c e s s  in  two ways.  On t h e  
one hand ,  t h e  e f f e c t s  o f  c o n t r i c t i o n  l e a d  t o  a d e p e n d e n c e  in  t h e s e  e q u a t i o n s  o f  D on p. On 
t h e  o t h e r  hand ,  t h e  e x i s t e n c e  o f  s o u r c e s  and s i n k s  o f  d i f f u s i n g  atoms a t  t h e  t r a p  s u r f a c e s  
results in dispersion and an average translational diffusion flux of atoms in the hetereo- 
geneous medium, and an average three-dimensional flow between phases. As a result D, k and 

in (4) and (5) are also dependent on ~. 

The constriction-based diffusion-coefficient correction factors exhibit an order pD, 
while the time scales characterizing the dispersion effects are of order p a ~ /D. Even when 
p - 1 these times are considerably shorter than the characteristic times of the diffusion 
processes in metals and other solid materials. Indeed, as a suitable estimate of the size 
of the macroscopic defects we can take a ~ i0-7-i0-6m [i]. Then ~/D ~ 1 only when D ~ 
10-14-10 -12 m2/sec, which corresponds to diffusion at relatively low temperatures. In the 
temperature range 102-103 ~ in which the chemicothermal treatment of the metals is usually 
conducted, D ~ 10-11-10 -9 m2/sec, i.e. the time a~/D, and even p a 2 /D, amounts to only small 
fractions of a second, which is considerably less than the tens of minutes or even hours 
needed for the chemicothermal treatment. 

Therefore, for the sake of simplicity, in the following we will totally neglect the in- 
dicated dispersion effects. This will make it possible to significantly simplify the prob- 
lem since the analysis of these effects is complex and.cumbersome [15, 16]. Moreover, we 
will assume that p ~ 1 (this is equivalent to the assumption that m, ~ c, for spot traps) 
and we will neglect the possible change in the dimensions of the traps in the diffusion pro- 
cess. This will offer us the possibility of leaving out of our consideration the effect of 
constriction on the value of the effective diffusion factor D, assuming it to be coincident 
with the diffusion factor for the impurity in the matrix. 

Thus, under the adopted assumptions, the only reason for the appearance of the disper- 
sion effect [the dependence on ~ of k and i in (4) and s 2 in (5)] can involve only the in- 
fluence exerted by the relaxation processes on the formation of nonsteady processes by which 
the atoms overcome the potential barriers in the case of spot trap collectors and for the 
case in which these atoms pass through the thin layer of interphase boundary in the case of 
macroscopic collector traps. In the first case, relaxation is associated with the fact that 
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in the nonsteady process the conditions of quasisteadiness for the Kramers model of transi- 
tion through the potential barrier are, generally speaking, not fulfilled. In the second 
case, relaxation can be ascribed to the finiteness of the rate at which the composition of 
the indicated layer is formed, and this corresponds to the varying concentrations within 
the volume of the phases separated by this layer. Since the various types of collectors 
are extremely diverse, we will make use here of the simplest relaxation phenomenological re- 

lationship 

TjOqfiat + q~ = Qj (7)  

for nonsteady flows qj, which in the case of j = i, 2 respectively characterize the capture 
and release of atoms by the collectors without making provision for atomic diffusion. The 
quantities Qj represent the steady-state values of the flows corresponding to the given in- 
stantaneous conditions, while [j corresponds to the corresponding empirical relaxatior 
times. Depending on the typeof trap, for purposes of calculating these quantities, ~e must 
either treat the dynamic problems dealing with transition through the barriers in terns of 
the methods of physical kinetics [13, 14], or examine the dynamics of change of state in the 
interphase separation layer by making provision for the processes of sorption and descrption 
in each of the phases, as well as the processes of dissociation and recombination and the 
possible chemical conversions within the layer itself [17, 18]. 

Let us introduce a coordinate system whose origin is at the center of one of the col- 
lector traps and we will write the Fourier transform for concentration unperturbed by this 
collector in the form of Taylor expansion 

c (~,  r) = c + Er + rMr + .... Sp M = s ~ 2 ,  ( 8 )  

i n  w h i c h  c ,  E , and  M h a v e  b e e n  d e t e r m i n e d  a t  t h e  p o i n t  r = 0 ,  w h i l e  t h e  r e l a t i o n s h i p  f o r  
the trace of the tensor 7~ follows directly for (5). In actual fact, Eq. (8) in the vicini- 
ty of the trap (r ~ a) represents an expansion over powers of the small a /L, where L is the 
linear dimension of the unperturbed field. The concentration c ~ = c~ of the impurity 
within the trap depends, generally speaking, on its location within the heterogeneous medi- 
um; in this regard, it is no different from the quantity c = c(~), introduced in (8). 

The presence of a collector leads to the perturbation c'(~, r ) of the quantity c(~), 
which must also satisfy Eq. (5). Taking Eq. (7) and (8) into consideration, we arriw~ at 
the following problem for the field c'(~, r ): 

t r O 

A c ' - - s a c  ' = 0 ,  r > a ;  l i m c ' = 0 ;  D(r/r)  v ( c + c ) r = a  = A l ( c + c ) r - . _ - _ a - - A ~ c ,  ( 9 )  

into which we have introduced the complex atomic capture and absorption reaction rates for 
the traps, namely, 

A j = ~ ( l + i ~ j )  -~, ] = 1 ,  2, (10) 

where the velocity constants oj are in obvious fashion related to the empirical kinetic co- 
efficients introduced within the framework of the phenomenological theory of diffusion [19]. 
In the following, these constants, as well as other introduced collector characteristics, 
are assumed to be known. 

In view of the linearity of the equations, it would be possible to examine the proces- 
ses of t~ap absorption and emission of atoms on an individual basis, as this is usually done 
in the theory of colloid coagulation (see, for example, [20, 21]). 

It is natural to look for the solution of problem (9) in the standard form of an expan- 
sion over spherical functions whose form is dictated by an analogous expansion of ser!~es (8), 
such as which occurs under the boundary condition. The ultimate goal of this solution is 
the calculation of the impurity flow to the collector trap. It is obviously only the first 
spherical symmetrical term of this expansion that contributes to this flow. Afterwe have 
written the expression exclusively for this term in explicit form, we obtain 

c' (o, 0 : - -  [Aft  + D (1 + z)l -~ { A ~  (1 + zU6) - -  DzZ/3] c - -  

--A2ac ~ (~r )  1/2 exp [ - - s ( r -  ~] + ... 

From this we have representation of the sort flow to the traps. If the collector traps 
are macroscopic, in the calculation we have the following per unit volume 
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J = n D  f r V ( C + c , ) d r = 4 n a D [ A l a + D ( l + z ) ] _ l [ A l a ( l + z +  (11)  
J r 

+ zZ/2 + za/6) c - -  A~ac~ z = sa, n = 3p/4na a. 

By definition, this quantity must be equal to kc - Am, from which with consideration of 
(6) we have 

k =  4~anD 
l + z +  + A i a + D ( l + z )  , (12)  

D A~a = (1 +z)  
a6 Ala + D (1 + z) 

On the other hand, from the determination of s 2 in (5) we obtain 

le (~ + io~) ( z z -  ir~ ) D = - -  z = sa. (13)  
D ir z ' 

Using  t h e  e x p r e s s i o n s  f o r  k and X f rom ( 1 2 ) h e r e ,  we s u b s e q u e n t l y  o b t a i n  an a l g e b r a i c  
equation for z, which we will write out as follows, introducing 

~a 2 a cr~ D zjD (14)  8 = ,  , g =  --, ~-- , 0 j =  , 
D ~ r ach a z 

in dimensionless form 

iep(l + ieOa) (1 + z + zZ/2 + zU6) = (z z - -  is) {~ (1 + leO,) (1 + z) + 
(15) 

-+- is(1 + isOz) [1 + n (1 + ieOx) (1 + z)]}. 

In the general case, from (15) we can derive a system of two nonlinear algebraic equa- 
tions for the real and imaginary parts of z, in whose solution it is necessary to resort to 
numerical methods. However, let us note that for processes not markedly different from the 
steady state, the dimensionless frequency must be small in comparison with unity. There- 
fore, it is natural to seek the solution of (15), using the series 

z = V ~  (Co + Cl V ~  + Cds + ...), (16) 

z 2 = is [C~ -a t- 2CoC1 Vi'~---}- (C~ --}- 2coc~) is + ...1. 

Having s u b s t i t u t e d  (16)  i n t o  (15 )  and h a v i n g  e q u a t e d  t h e  v a r i o u s  i n d i v i d u a l  powers  o f  
i~ in the left- and right-hand parts, we derive a system of real algebraic equations for the 
coefficients Ci, which are easily solved consecutively. This defines the expansion coeffi- 
cients z 2 in (16), as well as the corresponding expansion of the quantity s 2 = (z/a )2. 
Using the latter in Eq. (5) and limiting ourselves to the accuracy of terms of order ~2 in- 
clusively, we derive the following equation: 

ir (1 + ir c = D ,  he. ( 17 ) 

Here we have introduced the coefficients 

D . - -  ~ D, T---- ~ P .  p- ~ l - - n + & ( O z - - O x )  D p + ~  ~(p+~) . (18) 

If we examine the spot collectors, then in the calculation of the flow J we must take 
into consideration that m, -m = m, empty collectors are capable of absorbing atoms per unit 
volume of heterogeneous material, while m occupied collectors can emit atoms. In this case, 
c ~ is formally equal to 3/4~ a 3 for the occupied collectors and to zero for the empty collec- 
tor traps. The expressions for k and %, as before, are given by formulas (12), if n is re- 
placed by m, in the latter and it is assumed that 6 = a /3, as is the case for macroscopic 
three-dimensional traps. Thus, Eq. (17) with the coefficients of (18) is approximately 
valid also for materials containing spot collectors. 

Inverting the Fourier transform, from (17) we have 

.... ac T o2c + . . . .  D.Ac,  
at 2 at 

( 1 9 )  
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where the effective di{fusion coefficient D, differs, generally speaking, from D, while ITI 
plays the role of the characteristic time for thediffusion process. If we take into consi- 
deration in the calculation of the expansion coefficients in (16) of those terms proportion- 
al to (it) b with b > 2, then in (19) we note the appearance of terms with time derivatives 
higher than the second. 

We can see from formulas for D, in (18) that the fact that the diffusing impurity is 
exchanged between the matrix and the traps leads to a reduction in the effective observed 
diffusion factor relative to D, and this is all the more pronounced, the smaller $ is in 
comparison with p. From the determination of ~ in (14) it is clear that this effect Js more 
characteristic for three-dimensional (including spot) collector traps than it is for surface 
collector traps (for the latter we usually have 6 ~ a ), and it occurs in the event that the 
atoms are absorbed considerably more easily by the traps than are emitted from the traps 
(i.e., o I m 02). We should stress that this effect is due entirely to objective physical 
factors, and not associated exclusively with the overdetermination of the diffusion flow 
[as in the derivation of (3)]. This was noted earlier in [12, 16] for media in which the 
inclusions absorbed the fmpurites. 

With p negligibly small in comparison with unity (this must be the case, since it was 
conditional earlier to make no provision for dispersion effects such as those dealt w~th in 
[ii, 12, 16]), and for T within the limits of adopted accuracy we can write the formu2a 

[ la T =  1 - ] - q  -I- p (O~--Ox) - - ,  (20) 

from which i t  f o l l o w s  t h a t  IT[ a l s o  i n c r e a s e s  w i t h  a r e d u c t i o n  in  ~. I f  t h e  r e l a x a t i o n  of  
the atom transition processes from the matrix to the collector and back is not significant 
[(i + q)/$ m 82 - 81], Eq. (19) which describes the nonsteady diffusion process belongs to 
the elliptical type. In this case, the time [TI for large $ is proportional to q/$ ~ (6/a)• 
(D/aa2). Consequently, it increases, first of all, with transition from surface to three-di- 
mensional traps and, secondly, it increases when the rate constant for the emission of atoms 
from the traps diminishes relative to the diffusion rate D/a. 

In the opposite extreme case (i + q/$ ~ 82 - el), Eq. (19) is hyperbolic with 02 > 61 
(T > 0) and elliptical with %2 < 81. From the physical point of view, the transition to the 
hyperbolic telegraph mass-transfer equation and the subsequent reduction in the rate of 
propagation for the concentrated waves described by these equations is equal to (D,/T) I/2, 
and when 82 increases relative to 81 quite understandable. Indeed, this last situation co- 
responds, roughly speaking, to an increase in the average stay time of the atoms in the 
traps and, thus, to a decrease in the effective velocity of the atoms executing random mo- 
tions. 

Let us note that the relaxation effects which we are studying here do not, unlike the 
dispersion effect in [ii, 12, 16], lead to the appearance in (19) of integral terms describ- 
ing the effect of its earlier history on the diffusion process. This corresponds to the sit- 
uation in which the coefficient C I in (16) is identically equal to zero. However, the subse- 
quent integrals appear in the equation derived by means of the Fourier transform from (5) 
when using the following s 2 expansion terms over the powers of iE. 

Equations (17) and (19) can be used directly in analyzing the propagation of concentra- 
tion waves and various dispersion phenomena. For example, they are necessary for the cor- 
rect interpretation of the experimental data obtained by means of the pressure, oscillation 
method [22], and for their evaluation on the basis of the diffusion coefficient, as well as 
possibly, other parameters. In the mostwidely used variant of this method, we investigate 
the flow of impurities through a plane plate on one of whose surfaces periodic conditions 
are specified. For the sake of determinacy, we will examine diffusion through the plate un- 
der the following boundary conditions: 

c l x = o = c o ( l + ~ c o s o ~ t ) ,  cl~-n=O, 1 > 8 > 0 .  

From (17) and (21)  we o b t a i n  

c/c. = 1 - -  x /h  + ~Re [f exp (iot)], # [ l d x  ~ = R 2 exp (2i~) f ,  [l~0 = 1, 

(21) 

[ l~ -h=O,  R = ( c o / D , )  1/2 (l + Tz~oz) I/4, ~? = 2 ~ " 
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The solution of this problem is elementary, but cumbersome. Here we will write out on- 
ly the approximate result for thick plates, when hR m I: 

[ ~ exp [ - -  xR exp (i~)1 - -  exp [ - -  (2h - -  x) R exp (i~;)]. 

The impurity flow through the surface x = h is equal to 

Oc I _ c.D. 
J--- - - -D,  ~ lx~ h +A J, 

AJ ~ 2~coD,R exp ( - -  hR cos ~) cos (cot - -  ~), ~ ~ hR sin ~ - -  ~; ~ hR sin ~. 

From t h i s ,  we o b t a i n  

<AJ> ~ e x p  ( h ~  ~ , A O = O - - ~ o ~ . , h  'TI~ y / co 

where  t h e  a n g l e  b r a c k e t s  d e n o t e  a v e r a g i n g  o v e r  t h e  p e r i o d ,  w h i l e  t h e  z e r o  s u b s c r i p t s  i n d i -  
c a t e s  that the corresponding quantity is calculated at the limit T~ + 0. It is easy to see 
that regardless of how small the frequency ~, for thick plates, we are dealing with a cumu- 
lative effect: given sufficiently large h the quantities <A J> and % may be arbitrarily dif- 
ferent from <A J> 0 and %0. Therefore, it is clear that the presence of the term with the 
second derivative in (19) may be of decisive value for an adequate evaluation of the experi- 
mental result. If ITI ~ 2 i, we have 

] ~ S exp [ - -  H (S cos ~F - -  sign (f~)/~/2-)], A0 ~ H (S sin xF - -  1/~/2), 

- -  a~ctg / / =  h ~ f~ = T ~ .  S = ( l + f ~ ) l / 4 ,  T =  2 ' ' 

Figures 2 and 3 show j and AOIH as functions of ~ and H. 

Equations (17), and then Eq. (19) also, were actually derived in the assumption that 
the quantity ITI~, where ~ has the sense of the characteristic frequency of the diffusion 
process, is small in comparison with unity. Therefore, they must be valid, strictly speak- 
ing, only to describe those processes not significantly different from the steady state. 
However, if we understand D, and T not necessarily to be the parameters determined in (18) 
and (20), but certain empirically chosen quantities, then these equations can, apparently, 
be used also for correlation of the experimental data derived in essentially nonsteady pro- 
cesses that are not described by the usual parabolic equation of diffusion [23]. 

As as example, Fig. 4 shows the results from one of the experiments dealing with the 
penetration of carbon into steel 40. We used cylindrical specimens i0 nan in diameter and 
lO0 mm in length, the specimen were case hardened in a laboratory installation with a vacu- 
um furnace in an endogas atmosphere to which methane has been added, the composition of the 
latter monitored by means of a chromatograph and a special electrochemical sensor. The con- 
ditions of the experiments at a temperature of 910 ~ C were matched to the mass-transfer co- 
efficient at the surface, equal to 0.525"10 -5 cm/sec, with a diffusion coefficient 1.78"10 -7 
cm2/sec, which was estimated on the basis of data for an unalloyed austenite, these data 
having been taken from [24]. We can see from Fig. 4 that the telegraph equation with a re- 
laxation time of T = 2.85 h, chosen on the basis of the criterion best corresponding to the 
experimental points, considerably better describes the experimental distribution of carbon 
concentration in the surface layer of the specimen than does the parabolic equation with 
T=0. 

Further development of the proposed theory must be associated, apparently, with an an- 
alysis of relaxation processes for various types of collector traps. 

NOTATION 

a trap radius; c, c ~ , impurity atom concentrations in the matrix and within the coil- 
lectors; c,, concentration of positions accessible to atoms in the matrix; D, D,, diffusion 
coefficients; h, plate thickness; J, flow in the direction of the traps per unit volume or 
flow through the plate; k, coefficient of trap absorption of the impurity; m, concentration 
of impurity contained within the traps, in a solid material; m,, concentration of spot 
traps; n, numerical concentration of trap; qj, Qj, flows of impurities absorbed or emitted 
by the trap, and their steady-state values; s, parameter introduced in (5); T, characteris- 
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tic time in (17) and (19); z, parameter determined in (ii); ~, thickness of surface tr~ps; 
e, dimensionless frequency; ~, $, parameters determined in (14); Aj, complex kinetic coeffi- 
cients introduced in (i0); %, coefficient of trap emission of impurities; ~j~ 8~, dimension- 
al and dimensionless relaxation times for the processes of absorption and emlsslon; p, volu- 
metric concentration of collector traps; oj, absorption and emission rate constants; ~, ~, 
phase displacements in the problem pertainlng to the penetration of the impurity throug~ the 
plate; m, frequency. 
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